

ELIXIR PT & IMPACT

Ana Portugal Melo

ELIXIR Workshop "Impact Assessment at the National Node Level"

- The Portuguese distributed e-infrastructure of biological data
- A national expert multidisciplinary network in bioinformatics and advanced data management
- The Portuguese Node of the European network of experts and resources for biological data- ELIXIR

ABOUT BIODATA.PT

WHAT'S IN IT FOR YOU

INFRASTRUCTURE DATA SCIENCE CAPACITY BUILDING

Data Analysis

SERVICES

UNLEASHING YOUR CAPACITY

Data Management

Computing

Consulting and Training

Biome-Shiny (Crash-course)

DEVELOPMENT

TO EMPOWER THE RESEARCHER

Python Video Annotator

D-Cellerate
(Crash-course)

Research Problem: Analyse mutations Need computing power

Bi@Data.pt

Request @ Agendo

Virtual Machine as a service

VIRTUAL MACHINES

TO EMPOWER THE RESEARCHER

Predic	ted mutation	ons																
seq id	position	mutation	D84C1	D84C2	D84C3	D84C4	D84C5	D84C6	D84C7	D84C8	D84C9	D84C10	D84C11	D84C12	D84C13	D84C14	annotation	gene
1	1,498	G→T						5.3%									intergenic (-305/-35)	CABENIGC_00001 ← / → CABENIGC_000
1	1,507	C→A		6.9%	9.1%	12.3%		7.4%									intergenic (-314/-26)	CABENIGC_00001 ← / → CABENIGC_000
1	1,536	G→T					6.5%										E2* (GAA→TAA)	CABENIGC_00002 →
1	1,555	G→T					8.2%										R8I (AGA→ATA)	CABENIGC_00002 →
1	1,567	T→A				5.6%											L12* (TTA→TAA)	CABENIGC_00002 →
1	1,587	G→T			18.8%												D19Y (GAT→TAT)	CABENIGC_00002 →
1	29,414	C→G		10.9%													intergenic (+144/-261)	CABENIGC_00025 → / → CABENIGC_00
1	29,426	G→T	13.2%	25.9%	26.6%	16.6%	14.5%	25.5%	9.5%	8.9%	12.1%	6.5%	13.5%	11.7%	14.3%	11.2%	intergenic (+156/-249)	CABENIGC_00025 → / → CABENIGC_00
1	29,459	C→A			13.3%												intergenic (+189/-216)	CABENIGC_00025 → / → CABENIGC_00
1	74,873	С→Т	39.6%	43.7%	43.3%	42.3%	39.8%	44.6%	45.2%	45.8%	44.7%	40.3%	48.1%	46.4%	42.9%	42.8%	L423L (CTG→TTG)	CABENIGC_00066 →
seq id	position	mutation	D84C1	D84C2	D84C3	D84C4	D84C5	D84C6	D84C7	D84C8	D84C9	D84C10	D84C11	D84C12	D84C13	D84C14	annotation	gene
1	74,911	T→C	29.8%	33.0%	32.3%	32.8%	33.7%	35.3%	36.7%	32.6%	31.2%	26.9%	34.4%	35.3%	29.2%	35.4%	I435I (AT <u>T</u> →AT <u>C</u>)	CABENIGC_00066 →
1	74,956	G→A	19.7%	19.5%	21.7%	14.9%	20.8%	25.5%	22.5%	18.7%	15.6%	11.6%	20.4%	20.2%	17.3%	19.0%	T450T (ACG→ACA)	CABENIGC_00066 →
1	75,734	A→G	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%		100%	100%	100%	A200A (GCA→GCG)	CABENIGC_00067 →
1	75,746	T→C	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%		100%	100%	100%	G204G (GGT→GGC)	CABENIGC_00067 →
1	75,785	G→T	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%		100%	100%	100%	T217T (ACG→ACT)	CABENIGC_00067 →
1	75,848	C→T	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%		100%	100%	100%	T238T (ACC→ACT)	CABENIGC_00067 →
1	75,860	G→A	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%		100%	100%	100%	Q242Q (CAG→CAA)	CABENIGC_00067 →
1	75,869	G→A	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%		100%	100%	100%	K245K (AAG→AAA)	CABENIGC 00067 →

Research Problem:

Analyse big amounts of omics data Need bioinformatics expertise

Bi@Data.pt

Request @ Agendo

Bioinformatics analysis

BIOINFORMATICS CONSULTING

TO EMPOWER THE RESEARCHER

One Million Genomes

FLAGSHIP PROJECTS

TO BE ENGAGED WITH YOU

Deploy Genome Annotation Workflow to BioData.pt Cloud Set up a national Local EGA end-point to host genomic data

CONVERGE - A Toolkit for Data Management

FLAGSHIP PROJECTS

TO BE ENGAGED WITH YOU

Connect and align ELIXIR Nodes to deliver sustainable

FAIR life-science data management services

Develop, identify and promote key data management tools and resources for enabling FAIR data in key domains such as the plant sciences

CAPACITY BUILDING

SHARING A VISION WITH YOU

Ready for BioData Management?

Intro level workshop

DMP course

Seminar

REPORT 2017-

Bi_®Data.pt egr

THE PORTUGUESE INFRASTRUCTURE FOR BIOLOGICAL DATA

HIGHLIGHTS June 2017-September 2019

INTERNATIONAL **PUBLICATIONS**

EVENTS

from biological data management and

51 Communications	7	1	1
	Academic	New	Communication
	Thesis	Projects	Awards
17 Computing Applications	18 Models	3 Compute Infrastructure Nodes	7000+ New Website Users

TO GET YOUR ATTENTION

practices developed by the Plant Sciences Community at the ELIXIR-wide level, with strong participation from the PT node. The workshop included a keynote lecture from the notable Dr. Anne-Françoise Adam Blondon, which nearly filled the ITQB auditorium to capacity, and a hands-on exercise on MIAPPE data submission, which did fill the classroom to capacity. Participants Participants

CorkOakDB features the first draft genome of Quercus suber, released in 2018

The knowledge of the genetic structure of cork oak is essential for the future

pests. The genome sequence now available will also serve as a reference fo

variability related to characteristics of interest. This portal is intended to

become a repository of data originated by scientific research in multiple

by the GENOSUBER consortium, and allows genome browsing and gene

including gene expression data from publicly available datasets.

development of innovative breeding and production strategies. From here on it will be possible to identify and study genes involved in the acquisition of traits of interest, such as cork production or resistance to

sequencing other trees and identifying genetic

It also incorporates other types of data from cork oak scientific research.

TOOLS

· Data Searches

Direct Downloads

Feature Expression Visualiz

CorkOakDB aims to integrate the knowledge generated from submitting jobs to Galaxy Europe. fundamental and applied studies about Quercus suber, with a

focus on genetics.

Apr - Dec 2019

Users Countries

7

337

ELIXIR PT

785 vCPUs	1.8 TB RAM	156 TB Storage	321 Active VMs	

An open source graphical application for analyzing and annotating events captured in video, PythonVideoAnnotator was developed in concert with a video-capturing rig, with the aim of helping neuroscience and ethology researchers study animal behaviors. Ultimately, the goal of this software tool and supporting set-up is to bring Open Science practices to the study of animal behavior and promote reproducibility and standardization. During the period of this report, PVA was downloaded more than 2700 times.

BioData.pt eligir

REPORT

Coordinated by INESC-ID, the BioData.pt computing infrastructure includes IST, IGC and CCMAR as cloud service providers. The service provides virtual machines on demand,

complemented by a user-support service. Additionally, the infrastructure provides computing capacity to Galaxy Europe through the Pulsar network, which enables Portuguese researchers to use the infrastructure when

Report Period

THANK YOU

STAY TUNED

